QUASI-EXACTLY SOLVABLE SCHRÖDINGER EQUATIONS, SYMMETRIC POLYNOMIALS AND FUNCTIONAL BETHE ANSATZ METHOD
نویسندگان
چکیده
منابع مشابه
Bethe ansatz solutions to quasi exactly solvable difference equations
Bethe ansatz formulation is presented for several explicit examples of quasi exactly solvable difference equations of one degree of freedom which are introduced recently by one of the present authors. These equations are deformation of the well-known exactly solvable difference equations of the Meixner–Pollaczek, continuous Hahn, continuous dual Hahn, Wilson and Askey–Wilson polynomials. Up to ...
متن کاملQuasi exactly solvable matrix Schrödinger operators
Two families of quasi exactly solvable 2 × 2 matrix Schrödinger operators are constructed. The first one is based on a polynomial matrix potential and depends on three parameters. The second is a one-parameter generalisation of the scalar Lamé equation. The relationship between these operators and QES Hamiltonians already considered in the literature is pointed out.
متن کاملQuasi - Exactly - Solvable Differential Equations
A general classification of linear differential and finite-difference operators possessing a finite-dimensional invariant subspace with a polynomial basis is given. The main result is that any operator with the above property must have a representation as a polynomial element of the universal enveloping algebra of the algebra of differential (difference) operators in finitedimensional represent...
متن کاملQuasi Exactly Solvable Difference Equations
Several explicit examples of quasi exactly solvable ‘discrete’ quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable Hamiltonians of one degree of freedom. These are difference analogues of the well-known quasi exactly solvable systems, the harmonic oscillator (with/without the centrifugal potential) deformed by a sextic potential and the 1/ sin x potential de...
متن کاملQuasi-Exactly Solvable Systems and Orthogonal Polynomials
This paper shows that there is a correspondence between quasi-exactly solvable models in quantum mechanics and sets of orthogonal polynomials {Pn}. The quantum-mechanical wave function is the generating function for the Pn(E), which are polynomials in the energy E. The condition of quasi-exact solvability is reflected in the vanishing of the norm of all polynomials whose index n exceeds a criti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Polytechnica
سال: 2018
ISSN: 1805-2363,1210-2709
DOI: 10.14311/ap.2018.58.0118